
NONISOTHERMAL FLOW OF A POLYMERIC LIQUID UNDER A PULSATING 

PRESSURE GRADIENT 

Z. P. Shul'man, B. M. Khusid, 
and Z. A. Shabunina 

UDC 532.135 

A study has been made of the effects of pressure-gradient pulsations on the noniso- 
thermal flow of a nonlinear liquid with memory in an annular channel. 

Increasing flow rates is a major problem in transporting petroleum as well as polymer 
solutions and melts. Industrial methods are often directed to reducing the effective vis- 
cosity: heating and pulsation. The latter is related to the nonlinearity in the properties. 
There is considerable interest in research on this phenomenon. 

It has been shown [1-4] that the flow averaged over a period can be increased for a 
polymeric liquid by supplementing the constant pressure difference with an oscillating com- 
ponent of appropriate amplitude and frequency. Threeparameters influence the flow: the ampli- 
tude, the frequency, and the constant pressure difference. There is a characteristic peak 
on the curve for the change in relative flow rate I = (<Q> - Q0)/Q0 (<Q> is the flow rate 
averaged overa a period, while Q0 is that at constant pressure difference). I increases 
linearly with the square of the oscillation amplitude $2 for $2 < 0.25. 

The effects of frequency on the flow rate have remained debatable. In early experiments 
[i] with aqueous solutions of polyacrylamide, the concentrations were from 0.i to 2% (R-250 
polyacrylamide), where I increased with m. While the increase was slight for ~ < 5 rad/sec, 
the flow rate at higher m increased roughly in proportion to ~2 by factors of up to 4-5 at 
the maximum. Similar results were obtained in theoretical studies [5, 6]. However, other 
calculations for inelastic liquids such as [2, 4, 7] and for certain models of elastoviscous 
media [I, 3, 8-10] gave directly opposite results: the relative flow increase decreased as 
the pressure increased. This discrepancy was examined in [3], where it was found that the 
flow rate decreased as the frequency rose. The experiments of [3] were based on solutions 
of AR-30 polyacrylamide of concentration i and 1.5%, which differed from those used in [i]. 
The solutions also had different rheological characteristics, particularly as regards elastic- 
ity. So far, there have thus been no studies enabling one to explain the discrepancies between 
theory and experiment or to establish a physical mechanism for the frequency-dependent flow- 
rate change. 

There are theoretical and experimental studies [Ii, 12] on the flow of a polymeric 
liquid under constant pressure difference in a harmonically oscillating tube. It was found 
that the average flow rate increased with the frequency. On transferring to a mobile coordin- 
ate system linked to the tube, the problem is reduced to that of a liquid flowing in a tube 
at rest under a pulsating pressure gradient. 

We consider the flow of a polymeric liquid in a long coaxial cylindrical tube (R I -<_ r =< 
R2), whose walls are kept at constant but different temperatures 81 and 82 . There is a log- 
arithmic temperature distribution (8 - 8i)/(82 - 81 ) = (in r/R1)/(In R2/R I) transverse to 
the gap. 

A nonlinear integral rheological equation of state applies [13]: 

t 

T = J" m I t - -  t ', SD (t')] 1 + (C7-' (t') - -  E) + - ~ -  (Ct (t') - -  s dr ' ;  

(1) 

S " " 

t 

m = ~lh 2v~ -2 [h (SD (t')) exp [--  .[ )~71 gk ( D ( t ) )  d t  ], 
k ~ l  t " 
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S[, = 2 tr D2; ~h = rlo/~ (c~) k e ; 

~,k = ~,/ k~; 1,5 <cz <8.  

The principle of time-temperature superposition [14] is used to describe the temperature de- 
pendence of the theological parameter, which is as follows when one neglects the temperature- 
density correction: ~ = qSa(8); i = Xsa(8); O S = 0.5(01 + 82); a(8) = exp [(Ea/R)(I/O - i/ 
%)]. 

The liquid is driven by a pulsating pressure gradient applied at the initial instant: 

ozOP (t) -- (~Op)o (I + ~sinoot), ~_~0,5. (2) 
% 

Studies have been made on the transient response and the steady-state oscillations. We con- 
sidered not only a liquid with constant properties as derived from (i) with fk = gk = i but 
also the nonlinear McDonald-Bird-Carro MBC model: fk = (i + Xk'SD)/(I + XkSD); gk = (i + Xk'" 
SD )3/2/(I + XkSD)I/2; Xk' = 0"2Xk" 

The analysis was performed in dimensionless form, where we introduce the following: E1 = 
XN0/Ph 2 the elastic number (the ratio of the maximum relaxation time to the time for a shear 
wave to pass across the gap in the viscous liquid), We = XV/h = X(Sp/~z)0h2/q0 the Weissen- 
berg number (the elastic deformation in the relaxation time), De = mX the Debora number (the 
ratio of the maximum relaxation time to the pulsation period), Rem = pmh2/q0 the vibrational 
Reynolds number, and 6 = (R 2 - RI)/R I - h/R i the relative gap. The thermal cirteria were 
the temperature difference ~ = (81 - 02)/e S and the parameter b = RSs/Ea describing the tem- 
perature dependence of the viscosity. For example, if 8 x = 60~ and 9 = 0.15, then e= = 
13.5~ while for b = 0.05, the viscosity near the internal wall is less than that near the 
outer one by a factor 20.4. 

A numerical solution was obtained for the nonlinear case by means of an inexplicit con- 
servative finite-difference scheme. 

Low-amplitude oscillations superimposed on the pressure gradient produced oscillations 
in speed (flow rate) and stress around certain mean values corresponding to the flow produced 
by the constant pressure gradient applied as a pulse. The effects of El, We, and ~ on the 
flow build-up in pulsating flow are then analogous to those in cases previously considered 
[15]. 

The velocity profiles vary in phase for pmh2/n0 < 1 in the steady-state oscillations; the 
elasticity may lead to back flow with certain parameters, which occurs in the half-period 
corresponding to reduced pressure gradient, although the gradient remains positive throughout 
the period. That behavior is essentially different from that of an inelastic liquid, where 
return flow occurs only with negative pressure gradients. In the flow of a nonlinearly elas- 
toviscous liquid, there is a phase shift between the pressure gradient and the flow rate. 

The tangential stresses oscillate around a mean value; the largest deviations occur near 
the walls, and the amplitudes decrease away from them. At the point corresponding to the 
maximum on the stationary profile, there are virtually no oscillations even at the instants 
when one observes return flow, because the inertial forces are small, as are the oscillations 
superimposed on the pressure gradient. 

The problem is linear for a liquid with constant properties, and the velocity pattern 
after the flow is established is the sum of the stationary velocity Vz(1) and the oscillating 

one Vz(2) (~ = 0): 

v(zl) _ l ( Op ") (r,~ R~--(R~ -- R~)In (r/RO/ln (R~/ R1)); 
4~1o .~_0 

{ ( O p u . )  [-1-~clI~176176176 e x p ( i c ~ 1 7 6  (3) vz (2) = Im ~ 3 .  

go (R,x (co)) - -  go (R~x (,~1) ~ 

c~ = Io CRux (~o)) Ko (R~x (o~))-- To (R,X (co)) Ko CRux C~)) 

~o (R~x (co)) - -  IO (R, x (co)) 
c, = Io (R1x (r Ko (R,x ((o)) .... Io (R,x (o))) Ko (R,x ((o)) 

x (co) = io~o I n (co). 
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Fig. i. Dependence of the mean flow rate (a) and the relative 
excess (b) on the Weissenberg number for the MBC model (De << i, 
6 = 1):  ~ = 2 (i, 2); 3 (3, 4); a - ~ = 0 (I, 3); 0.5 (2, 4); 
b - $ = 0 .2  (1 ,  3 ) ;  0 .5  (2 ,  4 ) .  

Then q~ = q0 for a Newtonian liquid, while N~----XNhI(I + ikhoa) for an elastoviscous one. 
k=] 

We see from (3) that adding the oscillating quantity to the pressure difference as in 
(i) does not alter the mean flow rate. 

For a nonlinearly elastoviscous liquid, gradient variation as in (2) also produces oscil- 
lating velocity and stress patterns, 

vz (r, ' t) = vo (r) + Z [v~ (r) cos moat + v~ (r) sin rmot]; 
m = l  

~ T  I ii Trz(r, t) = T;~.o (r) + [ ~m(r) cosmoat + T~2m(r) sinmmt 1. 
m = l  

If there is only one harmonic in the time dependence of the pressure gradient, the oscilla- 
tions with frequency m play the main parts in these Fourier series. The oscillating component 
of the shear velocity has amplitude [(dvll/dr) 2 + (dvlll/dr)2] I/2, which alters the effective 
viscosity, which relates the stationary components of the tangential stress Trz a and the shear 
rate dv0/dr, which affects the average flow rate. 

There are six limiting cases for various relations between the times I/u, ph2/N0, X: 

for E1 >> i 

and for E1 << i 

1) 1 ~ ,oo~h21~lo <~ oak; 2) poah2/~o (~ 1 (~ oak; 3) po~h2/~o (~ oak ~ 1 

4) 1 ~ oak ~ poah2/%; 5) oak ~ 1 ~ poah~/N0; 6) oak ~ po~h~/No ~ 1. 

We c o n s i d e r  e ach  o f  t h e s e  in  more d e t a i l .  

1. The e l a s t i c  b e h a v i o r  i s  p r o m i n e n t  (De >> 1 ) ,  b u t  as  Re~ i s  l a r g e ,  t h e i n e r t i a l  f o r c e s  
p r e d o m i n a n t e  f a r  f rom t h e  w a l l  a t  h i g h  f r e q u e n c i e s .  Then _ v~ (2)  v a r i e s  o n l y  n e a r  t h e  w a l l  a t  
distances out to ~ ~ r while v(2) ~ (~p/Sz)0~ cos ~ / p ~  in the rest of the cross sec- 
tion. The oscillating part of the shear rate with amplitude about (8p/az)0$//pmq0 lies near 
the walls at distances of the order A m. Therefore, for Re~ >> i the effective viscosity 
alters only near the walls on account of the gradient pulsations, and there is no great change 
in the flow rate. 

2. The Reynolds number is small and the elastic effects are considerable. The pulsations 
then alter the mean flow rate considerably, since the effective viscosity alters throughout 
the cross section. 

3. The inertial forces are minor (Re~ << i); the Debora number, which defines the role 
of the relaxation, exceeds Rem, but is still small, which means that the stresses relax more 
rapidly than the pressure gradient changes. 

4. This case is analogous to the first. The behavior is determined by the inertial 
foces. 

5. The inertial forces are large. As in cases i and 4, the effective viscosity alters 
only near the walls. The behavior is close to nonlinear viscous. 
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Fig. 2. Change in relative flow rate 
J, MBC: = = 3, 6 = i, v = 0: i) De = 2, 
Rem = 0.01; 2) i0 and 0.05; 3) 20 and 
0.i; 4) quasistationary flow. 

6. The pulsations are fairly effective because Re~ is small and the elasticity is minor. 
As in case 3, the characteristic time for pressure gradient change is much greater than the 
relaxation time. When De << 1 (cases 3 and 6), one can use the formula for stationary shear 
flow. The instantaneous flow rate can then be calculated from 

where F defines the flow rate in a stationary state. The flow rate averaged over a period 
is 

1 "" F Op (1 + ~sinot ) dt. (4) 
<Q> - - f 2  0 

In a Newtonian liquid, the stationary flow rate is linearly dependent on the gradient. With 
a pseudoplastic liquid, the stationary flow rate increases more rapidly than as the first 
power of the gradient (F" > 0), while for a dilatant one, the converse applies (F" < 0). 
Therefore, for a pseudoplastic liquid with ~ 5 1 

op Op or) ] - F' d<Q> 1 (-~--z)or (1 sin [(-~zP' )o(1 sin > - - =  (-~z )o q-~ --~ mt)]}sinmtdt O, 
d~ u 

and f o r  a d i l a t a n t  one d<Q>/d~ < O. The mean f low r a t e  in  t h e  p u l s a t i n g  s t a t e  i s  t h u s  g r e a t e r  
t h a n  in  t h e  s t a t i o n a r y  one w i t h  g r a d i e n t  ( S p / S z ) 0 .  

F i g u r e  1 shows t h e  changes  in  <Q> and J = I / ~  2 f o r  t h e  MBC model c a l c u l a t e d  f rom ( 4 ) .  
The We dependence of J has a characteristic peak, which is more pronounced for larger ~. The 
calculations confirm the experimental and theoretical results on the linear dependence of I 
on ~2. 

For De << i, the behavior is close to nonlinear viscous. The results obtained for We >> 
1 agree with those from the analytic formula for a power-law dependence of the viscosity with 
n = i/= [3]: J = (i - i/~)=2/4. 

Particular interest attaches to the second case, where nonlinear elasticity appears, 
and the gradient pulsations are most effective because of the smallness of the oscillatory 
Reynolds number. The calculations were performed for the MBC model with 6 = I, ~ = 3, $ = 
0.5, E1 = 200, De = 0-20, Rem = 0.0025-0.1, We = 2-6. The relative change in flow rate J 
increases as We goes from zero up to a certain value (We " 4 for the parameters considered), 
but then it decreases, and it may enter the negative region if We is large enough (Fig. 2). 
This We dependence of J is characteristic of most values of De, apart from De ~ 2. At that 
point, J at first takes near-zero values as We increases and then enters the negative region; 
J then increases with We, passes through a maximum, and then falls. 

The maximal J may either exceed the quasistationary value or be less than it, in accord- 
ance with the value of the Debora number. At small De, i.e., in the region corresponding 
to weak elasticity, the relative change in flow rate decreases sharply as the frequency in- 
creases. Increasing the pressure gradient extends the range in Debora number for which this 
applied (Fig. 3). After the minimum, which may lie in the negative region, J begins to in- 
crease, which occurs in the range where the elastic behavior is more pronounced (larger De). 
Increase in We shifts the minimum to the right along the De axis, while Jmin itself decreases. 
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Fig. 3. Effects of frequency on flow-rate change, MBC, = = 3, 
= i, ~ = 0; E1 = 200; We = 2 (i), 4 (2), 6 (3). 

Fig. 4. Power variation in pulsating flow (i) and stationary 
flow at the same rate (2), MBC, E1 = 200, We = 4, 6 = i, $ = 
0.5, ~ = O, ~ = 3. 

A constant temperature difference increases the flow rate averaged over a period when 
the outer cylinder is heated but reduces it with the inner one heated: <Q>l~=-0.2s = 0.45, 
<Q>l~=0.2s = 0.20, <Q>Iv=0 = 0.34 for MBC with ~ = 3, 6 = i, E1 = 200, b = 0.01, De = I0, 
We = 4, ~ = 0.5. Pulsations superimposed on nonisothermal flow cause the mean flow rate to 
increase in both cases: J = 3.5 if v = 0.25 and J = 1.39 if 9 = 4.25. The absolute value 
of the mean flow rate is larger in the second case than in the first. The velocity profiles 
vary in phase and are displaced towards the higher-temperature cylinder. The flow rates for 

= ~0.25 at the maximum point differ by about a factor 1.5, while they are virtually equal 
at the minima; higher up, one finds values corresponding to the outer cylinder heated. This 
applies not only to the transitional stage but also to the steady-state oscillations. The 
tangential stresses are less at the hotter wall in nonisothermal flow. 

It is important to know the amounts of power required to implemeent the pulsating and 
stationary flows with identical rates. The general formula for the power is 

dr, 
2~ 5 Oz 

Figure 4 shows the De dependence of ~ ; the oscillations increases the rate, but at the 
same time there is an increase in the power for all We and De, particularly in the range cor- 
responding to J decreasing as De increases. The increment is reduced on the growth branch. 
In theoretical studies such as [2, 6, i0], it has also been found for simpified theological 
equations of state that the increase in flow rate due to oscillations is accompanied by energy 
losses greater than in the stationary case. In a nonisothermai flow, heating the internal 
cylinder produces a considerable rise in I. However, here again there is an increase in power 
in the oscillating case. 

Calculations for nonlinear equations of state with relaxation-time spectra most fully 
describing polymeric media thus predict a previously unknown regularity: J decreases as m in- 
creases for m% small but increases for m% large~ This agrees with experiment in the limiting 
cases of slight and pronounced elasticity. At present, the agreement is only qualitative, 
since we lack data on the relaxation times of these polymeric solutions and particularly on 
the dependence on shear rate. 

NOTATION 

r, 9, z, cylindrical coordinates; RI, R2, internal and external radii; t, time; Ct(t'), 
Ct-l(t'), Cauchy and Finger finite-deformation tensors; E, unit tensor; D, deformation rate 
tensor; m(t), memory function; e, model parameter; ~, relaxation time spectrum parameter; 
~(a), Reimann zeta function; tr, tensor sign operator; %k, relaxation times; l, maximum relax- 
ation time; N0, initial viscosity; nk, constants with the dimensions of viscosity; p, density; 
dp/dz, pressure gradient; T, excess stress tensor; %, temperature; 8S, recovery temperature; 
v z, velocity component; V = (Sp/Sz)0h2/N0, characteristic velocity; E~, activation energy; R, 
universal gas constant; $, fluctuation amplitude; ~, fluctuation frequency; ~/~G, dimension- 
less C~ 0 = 2~RI26D0/%2); Q = Q/2~RI 2V6, dimensionless flow rate; I0(), Bessel function of 
imaginary argument; K0(), McDonald function. 
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The results are given from numerical computations of the velocity and temperature 
fields in a magnetic-fluid sealing layer under one tooth of a cooled multistage 
magnetic-fluid seal. 

The use of magnetic-fluid (MF) seals in power-generating and industrial equipment is 
motivated by a number of advantages that they have over conventional sealing techniques [I]. 
The MF in a magnetic-fluid seal moves in the narrow clearance (6 = 0.1-0.2 mm) formed by the 
pole piece and the rotating shaft. The performance and time to first overhaul of the high- 
speed MF seal depends largely on the thermodynamic processes in the sealing layer [2]. The 
diagnosis of the hydrodynamic and temperature fields in a MF sealing layer is complicated by 
the small width of the working clearance and the capacity of the MF. It is particularly im- 
portant, therefore to consider numerical modeling of the thermo- and hydrodynamic processes 
in the working clearance of MF seals under conditions as close as possible to the actual work- 
ing environment. Studies of a one-dimensional model of the MF seal have been reported in a 
number of papers, in which data have been obtained on the velocity and temperature fields 
in a MF layer whose motion in the clearance obeys Newton's friction law. It is well known, 
however, that concentrated MF's exhibit non-Newtonian properties, even when the carrier 
liquid is Newtonian [3]. 

In the present article we investigate the thermo- and hydrodynamic processes in a multi- 
stage MF seal with magnetic-field concentrators in the form of identical teeth on the pole 
piece. The position of a tooth in the pole piece is specified by the conditions for the tem- 
perature at its boundaries. 
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